SYMMIC Users Manual CapeSym

Material Properties

Accurate material properties are essential to an accurate simulation. Although it is possible to compare the thermal performance of several alternative designs using only approximate material properties for the components and obtain the correct ranking of the designs, accurate quantitative information (such as peak temperature) requires accurate material properties.

The material properties of common pure substances like copper, for instance, are well known. However, properties for many of the materials currently used in electronic devices can be difficult to find. For this reason, CapeSym, Inc. provides an extensive library of material properties for commonly-used materials in the generic templates. These properties and their sources are listed here for reference.

It is suggested that the material properties listed here and supplied with the generic template are reasonable values suitable for the intended uses of SYMMIC. However, users are strongly encouraged to check with their suppliers to see if more accurate values are available for their particular materials, especially for items like greases and epoxies, whose properties vary widely from one product to another.

For each material listed below, the thermal conductivity (k), specific heat (c) and density (rho) are given as a function of temperature (if dependence is known), for the range 200 – 800 K. In some cases the thermal conductivity is a function of direction as well. In that case, values are listed for the three principal directions (i.e. orthotropic values): kx, ky and kz. Note that some orthotropic materials could conceivably be used in several different orientations in a device. The orientation listed corresponds to the one used in the generic template.

Representative surface emissivities are given for some materials, even though emissivity is a property of both the material and the surface finish, and values can range widely. This quantity is used when radiation boundary conditions are selected, otherwise it is not needed. It is the hemispherical total emissivity, which is a dimensionless quantity.

For the fluids, the dynamic viscosity (mu) is also given. Finally, SI units are given here, but those are not the units used in the template. Since the template dimensions are given in units of microns (μm), or 1x10-6 meters, the units required by SYMMIC are: T (K), k (W/μm-K), c (J/mg-K), rho (mg/μm3), and mu (mg/μm-s). Conversion between the two units systems is as follows: 1 (W/m-K) = 1x10-6 (W/μm-K), 1 (J/kg-K) = 1x10-6 (J/mg-K), 1 (kg/m3) = 1x10-12 (mg/μm3), and 1 (N.s/m2) = 1 (kg/m.s) = 1 (mg/μm-s).

Included Materials

Air – ref. Mills[1], p. 842.

Temperature (K):

Conductivity

(W/m-K):

Specific Heat

(J/kg-K):

Density

(kg/m3):

Viscosity

(kg/m-s):

200

0.0197

1009

1.767

1.359E-05

300

0.0267

1005

1.177

1.843E-05

400

0.0331

1009

0.883

2.252E-05

500

0.0389

1017

0.706

2.633E-05

600

0.0447

1038

0.589

2.974E-05

800

0.0559

1089

0.442

3.589E-05



Alumina, Al2O3 – ref. MatWeb[2] 99.9% Al2O3, polycrystalline aluminum oxide.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

200

82.0

502

3960

298

46.0

753

3960

400

32.3

920

3960

500

24.2

1046

3960

600

18.9

1088

3960

800

13.0

1172

3960

Aluminum, Al (pure) – ref. Mills[1], pp. 827-830.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

200

237

798

2702

300

237

903

2702

400

240

949

2702

500

236

996

2702

600

231

1033

2702

800

218

1146

2702



Aluminum Gallium Arsenide, AlGaAs – ref. NSM[3] or Puchert[4] for Al0.4Ga0.6As.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

11.4

410

4400



Aluminum Gallium Nitride, Al0.4Ga0.6N – ref. Quay [26].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

25

594

4952

350

20

-

-

400

16

-

-

450

14

-

-

500

12

-

-



Aluminum Nitride, AlN – ref. Slack et. al.[5] for k(T) (in-plane), and NSM[3] for c and rho.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

200

780

-

3255

300

319

600

3255

400

195

-

3255

600

100

-

3255

1000

49

-

3255



Aluminum Silicon Carbide, AlSiC – ref. 19th IEEE SEMI-THERM[6], D. Shaddock et. al.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

180

721

2989



Benzocyclobutene, BCB – ref. MatWeb[2], Dow Chemical Co.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

297

0.29

1176

1000

318

0.31

-

-

339

0.32

-

-



Copper, Cu – ref. Mills[1], pp. 827-830.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

200

413

356

8933

300

401

385

8933

400

393

397

8933

500

386

412

8933

600

379

417

8933

800

366

433

8933





Diamond, CVD – The conductivity for diamond produced by CVD varies strongly with the concentration of bonded Hydrogen (Sukhadolau[7]). Room temperature values can range widely (800-2000 W/m-K for k-parallel). Since the room temperature anisotropy is less than 20%, the table below simply gives representative k-parallel (in plane) values. Specific heat and density are from NSM[3].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

1250

520

3515

360

1100

-

3515

420

1020

-

3515

480

950

-

3515



Epoxy with Silver particles, Ag Epoxy – ref. 19th IEEE SEMI-THERM[6], D. Shaddock et. al.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

3.4

1254

3598



Fluorinert FC-77 – ref. Incropera[23], p. 262.

Temperature (K):

Conductivity

(W/m-K):

Specific Heat

(J/kg-K):

Density

(kg/m3):

Viscosity

(kg/m-s):

200

0.07056

893

2017

0.006371

275

0.06490

1011

1833

0.002155

300

0.06295

1051

1772

0.001386

320

0.06137

1082

1723

0.000972

350

0.05896

1129

1650

0.000657

370

0.05732

1161

1601

0.000632



Gallium Arsenide, GaAs – The data listed below is from Jordan's correlation[8]. A different correlation is given by Brice[9], resulting in conductivities which are 40% larger at 300 K. Specific heat and density are from MatWeb[2].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

200

64.6

-

5316

300

41.5

325

5316

325

38.0

-

5316

350

35.1

-

5316

375

32.5

-

5316

400

30.3

-

5316

450

26.7

-

5316

500

23.8

-

5316

600

19.5

-

5316

700

16.5

-

5316

800

14.3

-

5316





Gallium Nitride, GaN – There is a lot of scatter in the thermal conductivity data for GaN, presumably due to variations in the properties of the material. The temperature dependence appears to be at T-1.43 for some data; theoretically, we would expect it to go as T-1 or faster[10]. The dislocation density dependence is ~230.tanhm(5000000/dd), where m = 0.12 and dislocation density (dd) is in cm-2. The room temperature data vary from 150 – 210 W/m-K in ref[10] and [11]. The listed data starts from 150 at room temperature and scales it by T-1.43. A more comprehensive review is given in ref[12]. Specific heat and density are from NSM[3].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

200

268

-

6150

300

150

490

6150

325

134

-

6150

350

120

-

6150

375

109

-

6150

400

99

-

6150

450

84

-

6150

500

72

-

6150

600

56

-

6150

700

45

-

6150

800

37

-

6150



Germanium, Ge – ref. Ioffe Physico-Technical Institute website [3].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

200

90

280

5323

300

60

300

5323

400

40

310

5323

500

30

320

5323

800

20

340

5323



Gold, Au – ref. Mills[1], pp. 827-830.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

200

323

124

19300

300

317

129

19300

400

311

131

19300

500

304

133

19300

600

298

135

19300

800

284

140

19300



Grease, “TRA-GREASE” - Conductivities and densities are from a technical data sheet by Tra-Con, Inc.[13]. Specific heat values are estimates. Minimum thickness is unknown (expect at least 25 μm).

Grease, “TRA-GREASE GFC-G1” – ref. Tra-Con[13].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

2.0

800

2400



Grease, “TRA-GREASE GFC-H6” – ref. Tra-Con[13].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

4.0

800

2300



Indium – ref. Kaye & Laby[25].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

273

84

231

7310

373

76

247

7310

473

59

247

7310



“Kovar® – ref. MatWeb[2], Carpenter Kovar® Alloy.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

17.3

439

8360



“Micro-faze®” thermal pads – Conductivities are from a technical data sheet by AOS Thermal Compounds[14]. Specific heat and density values are estimates based on the given composition information.

“Micro-faze® A4”, thermal pad – 4 mil (102 μm) thickness.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

4.5

820

2900



“Micro-faze® K”, thermal pad – 6 mil (152 μm) thickness.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

0.9

850

2600



Molybdenum, pure – ref. Kaye & Laby[25].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

173

145

209

10222

273

139

246

-

373

135

259

-

573

127

274

-



Molybdenum Copper composites and laminates – the properties for various compositions of Molybdenum Copper are derived from two sources, a white paper by Ion Beam Milling[15] and a technical data sheet from Marketech Int.[16]. Conductivities and densities for the three higher-Mo-concentration composites comes from Ion Beam Milling, and the rest from Marketech Int. Specific heat values are calculated using Mills[1] values for the pure substances.

Molybdenum Copper, Mo85Cu15

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

155

271

10000



Molybdenum Copper, Mo80Cu20

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

165

278

9900



Molybdenum Copper, Mo75Cu25

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

175

285

9800



Molybdenum Copper, Mo70Cu30

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

195

291

9700



Molybdenum Copper, Mo60Cu40

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

210

305

9600



Molybdenum Copper, Mo50Cu50

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

235

318

9400



Molybdenum Copper, 1:1:1 Cu/Mo/Cu

Temperature (K):

kx, ky (W/m-K):

kz (W/m-K):

c (J/kg-K):

Density (kg/m3):

300

305

225

341

9370



Molybdenum Copper, 1:2:1 Cu/Mo/Cu

Temperature (K):

kx, ky (W/m-K):

kz (W/m-K):

c (J/kg-K):

Density (kg/m3):

300

275

205

318

9580



Nichrome, 77% Ni 20% Cr – ref. Touloukian[24]

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

273

12.6

432

8400

373

14

464

-

473

15.7

490

-

573

17.4

509

-



Nickel, pure – ref. Kaye & Laby[25].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

173

113

357

8907

273

94

429

-

373

83

465

-

573

67

569

-



Platinum, pure – ref. Kaye & Laby[25].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

173

73

123

21450

273

72

132

-

373

72

135

-

573

73

141

-



Polysilicon, polycrystalline silicon film (undoped) – ref. Uma et al [29].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

138

700

2330



Polysilicon, SUMMiT V polycrystalline silicon film (doped) – interpolated using Phinney et al [30].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

56.8

700

2330

325

53.6



350

50.7



375

48



400

45.4



425

43



450

40.7



475

38.6



500

36.6



525

34.6



550

32.8



575

31.1



600

29.4





Sapphire, Al2O3 – ref. Kyocera[17] provides k(T), while c and rho are from Mills[1] p. 831.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

298

42

765

3970

373

32

-

3970

573

20

-

3970

773

13

-

3970



Silicon, Si – ref. Glassbrenner and Slack[18] provide k(T), while c and rho are from [3].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

200

266

500

2330

300

156

670

2330

400

105

760

2330

500

80

820

2330

600

64

850

2330

700

52

-

2330

800

43

880

2330



Silicon Carbide, SiC – Room-temperature conductivity is listed by Cree[19] and Muller 2001[20]. Temperature dependence correlations can be found in Muller 1998[21] (T-1.29) and Ayalew[22] (T-1.5). We use the 4H S.I. Cree room temperature data with the Ayalew temperature correlation. Specific heat and density are from MatWeb[2].

Temperature (K):

kx, ky (W/m-K):

kz (W/m-K):

c (J/kg-K):

Density (kg/m3):

200

863

680

-

3200

300

470

370

670

3200

325

417

328

-

3200

350

373

294

-

3200

375

336

265

-

3200

400

305

240

-

3200

450

256

201

-

3200

500

218

172

-

3200

600

166

131

-

3200

700

132

104

-

3200

800

108

85

-

3200



Silicon Dioxide, SiO2, bulk silica amorphous glass – ref. Kaye & Laby[25].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

273

-

700

-

298

1.6

-

2100

373

1.7

830

-

573

-

1020

-

773

2.1

1110

-



Silicon Dioxide, SiO2, quartz crystal – ref. Kaye & Laby[25]. z-direction is c-axis.

Temperature (K):

kx, ky (W/m-K):

kz (W/m-K):

c (J/kg-K):

Density (kg/m3):

273

-

-

730

-

298

6.5

11

-

2600

373

5

8.3

860

-

573

-

-

1060

-

773

3.6

5

1200

-



Silicon Dioxide, SiO2, thermally-grown thin film – ref. Burzo et al. [27]. c and r from Kaye & Laby[25].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

273

-

700

-

298

1.27

-

2100

373

-

830

-

573

-

1020

-

773

-

1110

-



Silicon Dioxide, SiO2, ion beam sputtered thin film – ref. Burzo et al. [27]. c and r from Kaye & Laby[25].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

273

-

700

-

298

1.05

-

2100

373

-

830

-

573

-

1020

-

773

-

1110

-



Silicon Germanium, 20% Si 80% Ge – alloy properties interpolated in the manner of Palankovski [28].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

13.9

374

4724

325

12.6

-

4724

350

11.4

-

4724

375

10.5

-

4724

400

9.7

400

4724

425

9

-

4724

450

8.3

-

4724

475

7.8

-

4724

500

7.3

420

4724

525

6.9

-

4724

550

6.5

-

4724

575

6.1

-

4724

600

5.8

-

4724

800

-

448

4724



Silicon Germanium, 40% Si 60% Ge – alloy properties interpolated in the manner of Palankovski [28].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

10.2

448

4126

325

9.2

-

4126

350

8.4

-

4126

375

7.7

-

4126

400

7.1

490

4126

425

6.6

-

4126

450

6.1

-

4126

475

5.7

-

4126

500

5.3

520

4126

525

5

-

4126

550

4.7

-

4126

575

4.5

-

4126

600

4.2

-

4126

800

-

556

4126



Silicon Germanium, 60% Si 40% Ge – alloy properties interpolated in the manner of Palankovski [28].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

10.4

522

3527

325

9.4

-

3527

350

8.5

-

3527

375

7.8

-

3527

400

7.2

580

3527

425

6.7

-

3527

450

6.2

-

3527

475

5.8

-

3527

500

5.4

620

3527

525

5.1

-

3527

550

4.8

-

3527

575

4.5

-

3527

600

4.3

-

3527

800

-

664

3527



Silicon Germanium, 80% Si 20% Ge – alloy properties interpolated in the manner of Palankovski [28].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

15.2

596

2929

325

13.7

-

2929

350

12.5

-

2929

375

11.4

-

2929

400

10.5

670

2929

425

9.7

-

2929

450

9

-

2929

475

8.4

-

2929

500

7.9

720

2929

525

7.4

-

2929

550

7

-

2929

575

6.7

-

2929

600

6.2

-

2929

800

-

772

2929



Silicon Nitride, Si3N4 – ref. MatWeb[2], Reaction-bonded ceramic.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

12

1100

2500



Silver, Ag – ref. Mills[1], pp. 828-830.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

200

420

225

10500

300

429

232

10500

400

425

239

10500

500

419

244

10500

600

412

250

10500

800

396

262

10500



Solder, Au80Sn20 – ref. 19th IEEE SEMI-THERM[6], D. Shaddock et. al.

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

55

150

15000



Titanium, pure – ref. Kaye & Laby[25].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

173

26

438

4508

273

22

511

-

373

21

546

-

573

19

586

-



Tungsten, pure – ref. Kaye & Laby[25].

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

173

188

68

19254

273

177

120

-

373

163

133

-

573

139

135

-



Tungsten Copper composites – the conductivities and densities for various compositions of Tungsten Copper are derived from a technical data sheet from Marketech Int.[16]. Specific heat values are calculated using Mills[1] values for the pure substances.

Tungsten Copper, W90Cu10

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

185

157

16800



Tungsten Copper, W85Cu15

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

195

170

16400



Tungsten Copper, W80Cu20

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

210

183

15600



Tungsten Copper, W75Cu25

Temperature (K):

Conductivity (W/m-K):

Specific Heat (J/kg-K):

Density (kg/m3):

300

230

195

15000



Water, H2O – ref. Mills[1].

Temperature (K):

Conductivity

(W/m-K):

Specific Heat

(J/kg-K):

Density

(kg/m3):

Viscosity

(kg/m-s):

275

0.55600

4217

1000

0.001700

300

0.61100

4178

996

0.000867

320

0.64100

4174

989

0.000584

330

0.65200

4178

985

0.000492

350

0.66900

4190

973

0.000379

373

0.68100

4212

958

0.000285



References Cited

  1. Basic Heat and Mass Transfer, Mills, A. F.; Richard D. Irwin, Inc.,1995.

  2. MatWeb Material Property Data, www.matweb.com.

  3. Ioffe Physico-Technical Institute website, www.ioffe.ru/SVA/NSM/Semicond in April 2008.

  4. Transient Thermal Behavior of High Power Diode Laser Arrays, Puchert, R., et. al.; IEEE Transactions on Components, Packaging and Manuf. Tech. Pt. A, Vol 23, No. 1, pp. 95-100, 2000.

  5. The Intrinsic Thermal Conductivity of AlN, Slack, G., Tanzilli, R., Pohl, R., and Vandersande, J.; J. Phys. Chem. Solids, Vol. 48, No. 7, pp. 641-647, 1987.

  6. Advanced Materials and Structures for High Power Wide Bandgap Devices, Shaddock, D., et. al.; 19th IEEE SEMI-THERM, pp. 42-47, 2003.

  7. Thermal Conductivity of CVD Diamond at Elevated Temperatures, Sukhadolau, A., et. al.; Diamond and Related Materials, Vol. 14, pp. 589-593, 2005.

  8. Jordan, A.; J. Crystal Growth, Vol. 49, p. 631, 1980.

  9. EMIS Data Reviews, Ser. No. 2, Brice, J.; London, INSPEC ISBN 0-85296-3238.

  10. Accurate Dependence of Gallium Nitride Thermal Conductivity on Dislocation Density, Mion, C., Muth, J., Preble, E., and Hanser, D.; Applied Physics Letters, Vol. 89, 092123, 2006.

  11. Thermal Modeling and Measurement of GaN-Based HFET Devices, Park, J., Shin, M., and Lee, C.; IEEE Electron Device Letters, Vol. 24, No. 7, pp. 424-426, 2003.

  12. Thermal Conductivity of GaN, Kamatagi, M., Sankeshwar, N., and Mulimani, B.; Diamond and Related Materials, Vol. 16, pp. 98-106, 2007.

  13. Tra-Con, Inc., 46 Manning Rd., Billerica, MA 01821; www.tra-con.com.

  14. AOS Thermal Compounds, 22 Meridian Road, Suite #6, Eatontown, NJ 07724; www.aosco.com.

  15. Laser Diode Heat Spreaders, Quagan, R; Ion Beam Milling, Inc., 1000 E. Industrial Park Dr., Manchester, NH 03109; www.ionbeammilling.com.

  16. Marketech International, Inc., 107 Louisa Street, Port Townsend, WA 98368; www.marketech-heatsinks.com.

  17. Kyocera International, Inc.; http://americas.kyocera.com/kicc/pdf/Kyocera%20Sapphire.pdf.

  18. Glassbrenner, C., and Slack, G; Phys. Rev. (USA), Vol. 134, p. A1058, 1964.

  19. Cree, Inc., 4600 Silicon Dr., Durham, NC 27703; data from www.cree.com in April 2008.

  20. Progress in the Industrial Production of SiC Substrates for Semiconductor Devices, Müller, St.G., et. al.; Material Science and Engineering B80, pp. 327-331, 2001.

  21. Materials Science Forum, Vols. 389-393, p. 623, 1998.

  22. SiC Semiconductor Devices Technology, Modeling, and Simulation, Ayalew, T.; Ph.D. Thesis, Technische Universitat Wien, January 2004; www.iue.tuwien.ac.at/phd/ayalew.

  23. Liquid Cooling of Electronic Devices by Single-Phase Convection, Incropera, F. P., John Wiley & Sons, Inc., 1999.

  24. Touloukian, Y.S., Thermophysical Properties of Matter, IFI/Plenum, 1970. Online at www.cindasdata.com

  25. Kaye & Laby Tables of Physical & Chemical Constants, 16th Edition, 1995. Online at www.kayelaby.npl.co.uk

  26. Quay, R., Gallium Nitride Electronics, Springer-Verlag, Berlin. 2008.

  27. Burzo, M. G., Komarov, P. L., Raad, P. E., “Thermal Transport Properties of Gold-Covered Thin-Film Silicon Dioxide,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 1, March 2003.

  28. Palankovski, V., “Simulation of Heterojunction Bipolar Transistors,” Dissertation, Wien Technical University, 2000.

  29. Uma, S., McConnell, A. D., Asheghi, M., Kurabayashi, K., Goodson, K. E., “Temperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers,” International Journal of Thermophysics, Vol. 22, No. 2, 2001.

  30. Phinney, L. M., Kuppers, J. D., and Clemens, R. C., “Thermal Conductivity Measurements of SUMMiT V Polycrystalline Silicon,” SANDIA REPORT SAND2006-7112, November 2006.

CapeSym > SYMMIC > Users Manual
© Copyright 2007-2019 CapeSym, Inc. | 6 Huron Dr. Suite 1B, Natick, MA 01760, USA | +1 (508) 653-7100